

Group Recognition

- Given a set of elements $g_1, \dots, g_r \in S_n$ how do we find out what $G = \langle g_1, \dots, g_r \rangle$ is?
- In general this is hard
 - * knowing $|G|$ isn't enough

For example, we know there are 2 groups order 4 C_4 and $C_2 \times C_2$

But it gets worse... there are 9310 groups of order 2187
 - * calculating all elements of G is computationally expensive
 - * knowing the possible orders of the elements of G isn't always enough to determine G
 - * There's lots of interesting research and results in this area

- Thankfully when $|G|$ is small things aren't so bad
- Here's a table for $|G| \leq 7$

$ G $	$G \cong$	Element Orders	Abelian?
1	Trivial group	1	✓
2	C_2	1, 2 ¹	✓
3	C_3	1, 3 ²	✓
4	C_4	1, 2 ¹ , 4 ²	✓
	$C_2 \times C_2$	1, 2 ³	✓
5	C_5	1, 5 ⁴	✓
6	C_6	1, 2 ¹ , 3 ² , 6 ²	✓
	$S_3 \cong D_6$	1, 2 ³ , 3 ²	✗
7	C_7	1, 7 ⁶	✓
↑			The notation $a_1^{b_1}, a_2^{b_2}, \dots$ means G has b_1 elements of order a_1 , b_2 elements of order a_2, \dots
up to iso only 1 grp order p		P prime	C_p
		$1, p^{p-1}$	✓

- How to spot a dihedral group?

$$D_{2n} = \langle r, s \mid r^n = s^2 = 1, srs = r^{-1} \rangle \quad |D_{2n}| = 2n$$

Some people call this D_n since it's the symmetry group of an n -gon