
~3 - Additional Details

- Let E be the splitting Field of F = x" _2EQ[x]
- We saw in lectures that G= Aut(Q) has order 8 and
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e> where 0 : X1 Xi and Y : X +o X
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- Let 22 be the set of subgroups Of G /you won't be expected to calc all these !)
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- Lets consider the Galois Correspondense
-> For Helz

,
we know (Fix (H) : Q)=

- If we can spot elements of E fixed byH then rab!

Lets do some of the cases where we can do this

* We know Fix(id]) = E and Fix (G) = Q

* 1 KO> 1 = 4 ⇒ (Fix (cor) : Q) =長1
= 皇 = 2

σ Fixes i EQ(i) < Fix(07)
(QCi) : Q) = 2 ⇒ ④ (i ) = Fix (<o>)

* K 8 >]= 2⇒ ( Fix ( <π>): Q )= 1に 皇 = 4

↑ Fixes x Q(x) - Fix (<Y))
(Q (α) : Q ) = 4 ⇒ Q (α) = Fix<∞>)

*1K
σ2> に 2 ⇒ (Fix (sozz) : Q )= = 皇 = 4

ofixes i t Q(i) = Fix(023)

(QCi ) : ) = 2 ⇒④() 手 Fix<oz >)
=>We need to search for more fixed els
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⇒ Q (x2) ≤ Fix (<σ22)
=> Q(x?, i) 5 Fix ((o2)

Exercise - show using the tower law (Q(xi) : Q) = )[
⇒ Fix (<σr> ) = Q(x
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* 1 KO2
,
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* Koz ,one> l = 4

⇒ (Fix (Lo3
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σ
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σ e (E) = στ (α2) = σ(α2) = - α
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σr ( i ) = σ ( - i) = - i

σr(E) =oc (α2 ;) =σ(- α℃ )= 〆 20=≡ i

=> Q(Ei)
_

> Fix ((02,02L)

(ii) = -2 = Ei is a root of x+ 2 which is irr by Eis with P=2

⇒ (Q (iπ i) : Q ) = 2

⇒ Fix (Lσ 2
,
σ rx) = ⑤(Ʃ ?)

- Now lets do some which are harder to spot
* (G34)2 = 34834

α we showed in

= G
3
σ the Lecture YOY =03
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⇒ I FixS<o3 es) l = 을 = 4

(E : Q) = 8

=> E as a vector space over Q has a basis of size 8
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X

,
X2

,
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,
ixix] where x = 4*)

> an arbitary element beE can be expressed as

b = Go +a
, x + a2x2 + az3 + a4i + agix +agia + a)i3 aiEQ

What doesoby do to b ?

G34(b) = a3y(a0 +a
, x + a2x2 + azx3 + axi + agix +agix + ayix3)

= ao + a , (i3x) + a
,
(i3x)2 + az(i32)3 + a4(-i) + ag)-i . ix) +as)-i(ix)2)+ayfisi))
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,
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=> G3y(b) =b( - a) = as - az = az az = ay - Gq = Ga

② - a . zas az = 0 az = a
, as = 0



=> Elements of E fixed by aby can be expressed as
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E Q(x(1 -i)) = Fix ((03y))
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⇒ (Q (α ( - ;)) : Q ) = 4 ↑
inr by Eis with p = 2

⇒ QS× ( - i) ) =Fix(C03:)
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⇒ 12σ28 >] = 2

⇒ (Fix (<σrr>) : Q] = 1些 = 4

GT(90 + 9 , x + a
,
x" +azx3 +axi +agix +agix2 + ayix3)

= 90 - a, x +azx2 - azx3 - axi + agix - agix + ayix3

=>o'f Fixes aota , x + .. + Gyix
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, Gz = -az 94 = -94@6 = - 96

② a
.

= a
3 = a 4 = a

6 =∞

⇒ or ℃fixe品assi ?six3
= ou Fixes ix

E Q(ix) = Fix(02))
iX is a root of F= x-2 which is in

⇒ ( Q (iα) : Q) = 4

E Fix(02)) = Q(ix)

* In the leasure we showed
Fix LO τ7) = Q (α ( iti ))

G Q

Lσ?
?
☆> LO> (T) 内 (α) Q(i) QSa2 .)

(o) (i) (2) (os2) <Con) Q(xil Q ⑪Sa고, : ) Q((1-i)) Q(x(1+i))

{ id了 Q(x
,

i )


